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Interspecies Variation in Myocardial
Physiology: the Anomalous Rat
by Glenn A. Langer*

The heart of the adult rat has long been recognized to be anomalous in at least two respects: an absent
or negative inotropic response to an increase in rate of electrical stimulation (negative staircase); resis-
tance to digitalis glycosides. The heart of the neonatal rat (less than 2 weeks old), on the other hand,
demonstrates a markedly positive staircase and a large increase in force upon application of glycoside. It is
significant that the action potential of the neonate ventricle demonstrates a prolonged plateau component
which progressively decreases with age. The shortening of the plateau correlates with the disappearance of
the positive staircase and glycoside responses. Previous studies indicated that a major factor contributing
to the prolonged plateau of the neonate was a high level of sodium (Na) conductance. Thus transmem-
branous Na movement associated with excitation is considerably greater in the neonatal heart as com-
pared to the heart of the adult rat. The higher level of intracellular Na would produce increased activity of
a proposed sodium-calcium (Na-Ca) carrier. This is believed to mediate the augmented influx of Ca which
is responsible for positive staircase and glycoside responses.

Ventricular muscle from the hearts of most mammalian species demonstrates a prolonged plateau with
maintenance of a "slow" channel for Na. It appears that in the rat this channel closes with age. It follows
that there would be a reduced tendency for the adult rat heart to accumulate intracellular Na, [Na]i, when
excitation frequency is increased or the Na pump is inhibited by digitalis. Since elevation of [Na]i is the
stimulus for the proposed Na-Ca carrier, this system would not be activated, Ca influx would not increase
and contractility would not be augmented.

In many biological investigations it is the mutant
organism or the anomalous species which fre-
quently provides additional insights into basic
mechanisms of function. Definition of the basis for
an anomaly may further define the normal condi-
tion. In the area of mammalian myocardial physiol-
ogy the rat has provided just such an anomalous
condition. The rat heart demonstrates anomalies
with respect to its action potential (1, 2), force-
frequency response (1-3), ionic exchange parame-
ters (2, 4-6) and response to digitalis glycosides (2,
7, 8). Investigation of these characteristics has pro-
vided further insight into fundamental properties of
myocardial function not only in the rat but in other
mammalian species.

I will first review the anomalies and then attempt
to correlate them in such a manner as to indicate
how the information has provided further definition
of a model for control of myocardial force develop-
ment.
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Center for the Health Sciences, Los Angeles, California 90024.
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Action Potential
As compared to most other mammalian species,

the action potential (AP) recorded from ventricular
cells of the adult rat is considerably shortened (1, 2,
9) with total duration in the range of 100 msec. The
AP demonstrates an essential absence of the plateau
(phase 2) component and this accounts for the major
part of the shortening and the fact that the effective
refractory period is less than 50 msec in duration
(9). It is interesting that the short AP develops as
the rat ages. Prenatally and during the early
neonatal period the duration is much increased (2,
10, 1H). At 1 day of age a prominent plateau is pres-
ent with a total AP duration of approximately 300
msec. There is then a progressive loss of the plateau
through the next 3-4 weeks such that the adult con-
figuration is achieved (Fig. 1).

It is likely that the changes in the plateau are
secondary to changes in both sodium and potassium
conductance (9Na and gK). Diminution in both de-
layed and anomalous rectification for K would
shorten the plateau as would loss of a slow con-
ducting Na channel. There is experimental evidence
for the latter (2). If the Na concentration in the per-
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FIGURE 1. Action potentials: (A) Sequence of a
configuration with age from 1 day to adult. Nc
sive shortening attributable to abbreviation (
(B). Effect of a 50%o reduction in [Na]0 at 1 da
Note that at 1 day the effect was primarily to r
and duration of the plateau but at 26 days the a
spike and dVldt were principally affected. Re
permission of Circ. Res.

fusion medium is reduced to one-h
(choline chloride substituted to maintair
ity) for the 1 day old ventricle the j
amplitude and duration decrease marke4
This suggests the presence of a signific-
ward Na current during the early neor
with progressive closing of the slow-chz
rat ages.

It should be noted that the configurn
AP in the early neonatal rat is similar tc
in adults of other mammalian species. 1
heart AP becomes anomalous with age.
question, in a teleological sense, what t]
from the progression. The adult rat has
of 400-500 beats/min. A short plateau wi
dent short refractory period obviously p
high heart rates to be established. As
perhaps, is the closure of the slow Na c
tem. In other mammalian species with
and prominent plateau, the slow Na cha
approximately 75% of the Na which i
tracellularly with each AP (12). At high
this large influx places a large load on th
of the cell. In the adult rat heart most (
channel Na influx is eliminated, leav
pump to handle the influx associated wi
component (phase 0) of the AP which is
on the fast Na channel. Therefore a la
nent of the energy required for active N
is eliminated.

Force-Frequency Respons
In most mammalian species an increa

lation frequency induces an increase in force de-
velopment known as the Bowditch staircase
phenomenon (13). Within similar frequency range

6 DAY the rat heart shows a decline in contractile force
with increasing stimulation frequency (1-4).
As indicated with the AP, in the neonate as com-

pared to the adult, the force-frequency response
differs markedly in the young as compared to the
old rat. A markedly positive staircase is present

ADULT during the first week of life which then declines by
three weeks to give the negative response typical of

50D% Noa] the adult rat (Fig. 2). This temporal sequence of
mechanical function matches the sequence of the
electrophysiological changes so that as the AP
shortens the positive staircase declines and be-

.ction potential comes negative.
)te the progres- Again, the staircase response of the neonatal rat
of the plateau. is the response found in the hearts from adults of
y and 26 days. other species. Therefore the force-frequency re-
mplitude oftheel sponse, as does the AP progression, becomes
produced with anomalous with age.

Lalf normal Ionic Exchange
n isosmolal-
AP plateau Upon an increase in stimulation frequency mostPy (Fig. 1) mammalian species demonstrate a net loss of K
ant slow in- from the heart (14-16). In contrast, the adult rat

iatal period heart demonstrates little or no loss of cellular K.
innel as the Instead the increase in frequency is associated with

an increase in the steady-state rate of cellular K
ation of the exchange, i.e., increased turnover rate without a

) that found change in the quantity of K within the cell. This
Thus the rat increased steady-state exchange with higher stimu-
One might lation frequencies is consistent with the absence of

he rat gains a plateau component of the action potential and,
a heart rate more specifically, the absence of an anomalously
ith its atten- rectifying channel for K. Though the studies have
ermits such not been done, it would be expected that the early
important, neonatal heart would demonstrate considerably less
hannel sys- increase in steady-state K exchange upon increase
longer APs in stimulation frequency. This expectation is based
nnel admits on the probable presence of anomalous rectification
influxes in- in the neonatal heart which acts to reduce gK below
lheart rate, resting level during the plateau phase and cancel, so

ie Na pump to speak, the augmented outward K current which
f this slow develops during repolarization. This combination
ing the Na acts to maintain steady-state K exchange unaltered
th the spike over a large range of stimulation frequency. The
th hespedent absence of a net loss of K will be discussed furtherrdependent below.

,a transport There are other interventions to which the rat re-
sponds anomalously in terms of its ionic exchange
properties. One is the response of myocardial K

;%0e exchange to respiratory acidosis. Upon induction of
a respiratory acidosis the beating rabbit ventricle

vse in stimu- demonstrates a net increase in its K content. This is
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FIGURE 2. Tension and dPldt responses: (A) following an increase in stimulation frequency from 30/min to 90/min of a papillary muscle

from a 5-day-old, a 14-day-old, and a 22-day-old neonatal rat; (B) the same papillary muscles 5 and 10 min after the administration of
5 x 10-5M ouabain, stimulation frequency 30/min. Reproduced with permission of Circ. Res.

contrasted to the absence of increased uptake in the
quiescent, nonelectrically stimulated rabbit heart
and in the stimulated rat heart-i.e., the rabbit's
response is made ratlike by the absence of mem-
brane depolarization.
The response ofK exchange to magnesium is also

dissimilar in the rabbit and the rat (6, 17). In the
rabbit, Mg did not affect ventricular K exchange
under normal physiological perfusion conditions,
whereas K exchange rate in the rat ventricle was
markedly depressed by Mg. In order that an effect
of Mg be demonstrated in the rabbit, K efflux had

first to be increased by administration of a digitalis
compound. Mg would then abolish the glycoside-
induced net K loss. In this case, then, the rabbit was
made ratlike by prior administration of digitalis.
Mg also affects force development very differ-

ently in the rat and rabbit. Perfusion of the rabbit
ventricle with 20mM Mg decreases the rate of ten-
sion development (dPldt) to 84% of control whereas
the same concentration reduces dPldt of the rat
ventricle to 15% of control (6, 17). Obviously the rat
demonstrates a great deal more sensitivity to the
excitation-contraction uncoupling effects of Mg.
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Digitalis Glycosides
It is well known that the adult rat heart is remark-

ably resistent to the action of the digitalis glycosides
(7, 8). Doses of glycosides which are markedly toxic
to most mammalian hearts produce little or no effect
in the rat. The resistance to the drug has been pro-
posed to be due to its more rapid dissociation from
binding sites in the rat heart as compared to the
dissociation from hearts of other species (3, 4, 18).
As with AP and force-frequency the neonatal rat

myocardium presents a different response which is
much less anomalous (2). Papillary muscle from a
rat 5 days old demonstrated an increase of 160o in
dPldt upon perfusion with 5 x 10-5M ouabain. A
muscle from rats 22 days old demonstrated an in-
crease in dPldt of only 12% given the same dose of
glycoside (Fig. 2). It is notable that the sensitivity of
the target enzyme of the glycoside, Na-K ATPase,
was exactly the same in the hearts from rats 5 days
old and from adult rats (personal communication,
K. D. Philipson). This indicates that the different
response cannot be attributed to a change in the
characteristics of the enzymes with age. The reason
for the progressive resistance to glycoside must be
related to another system which is operative in the
control of contractile force.
The anomalies of the rat heart discussed above

have provided important clues leading to the further
definition of the systems important to control of
contractility in the mammalian heart.

Model for Myocardial Contractile
Control

Details of a model (Fig. 3) for the ionic control of
myocardial contractility have been developed in a
number of recent publications (19, 20), but a brief
summary is necessary here in order to understand
how the anomalous rat is the exception that may
lead to proving the rule or, in this case, the model.
Mammalian hearts, including the rat, are depen-

dent upon a rapidly exchangeable source of calcium
(Ca) for the support of contractile force. It remains
uncertain as to whether the major portion of Ca
involved in E-C coupling moves across the sar-
colemma with each beat or whether a portion is
released from internal sarcotubular sites by the
mechanism of Ca-induced Ca release (21). It is pos-
sible that a combination of the two mechanisms is
operative, but it remains, nevertheless, certain that
modulation of the amount of Ca which crosses the
sarcolemma upon excitation is of critical impor-
tance in control of the contractile response. This Ca
is probably derived from sites at the surface of the
cell within the surface-coat/external lamina com-

EXTERNAL SURFACE \
LAMINA COAT LIPID UNIT

MEMBRANE

FIGURE 3. Model for Ca movement. Ca is bound to negatively
charged sites in the external lamina of the membrane. These
sites are in rapid equilibrium with Ca in the interstitium. The
external lamina is proposed to supply the Ca that moves
across the sarcolemma via two routes: (1) through a pore
system formed by integral proteins embedded in the lipid
membrane; movement through this system would be elec-
trogenic; (2) with a carrier (coupled to outward Na move-
ment) such that movement via this system is electroneutral.
Reproduced with permission of International Review of
Physiology, Copyright, 1976. University Park Press, Balti-
more.

plex (22). This complex contains large amounts of
glycoprotein and glycolipid and carries a large
quantity of negatively charged sites which are be-
lieved to represent the loci for Ca binding. Although
extensive interspecies studies have not been done it
is likely that the surface coat/external lamina com-
plex functions similarly in mammalians, including
the rat. It should be noted however, that the rat's
sensitivity to uncoupling by Mg (see above) may
indicate some differences in the structure of the
surface complex.
The next component of the model is concerned

with the movement of Ca from its binding sites
across the sarcolemmal complex. Evidence now in-
dicates that a major portion of this movement oc-
curs via a carrier system which couples the move-
ment of one Ca ion inward to the movement of two
Na ions outward (23). The rate at which the carrier
moves or the number of carriers which are activated
(the models are equivalent) depends upon the con-
centration of a component of intracellular sodium
[Na]i. An increase in [Na]i causes increased carrier
activity which results in greater Na movement out-
ward and greater Ca movement inward. The latter
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would be expected to bring additional Ca to the
myofilaments and result in a positively inotropic re-
sponse (Fig. 3).

If such a Na-Ca carrier is operative, any inter-
vention which results in increased [Na]i would re-
sult in increased contractile force. In most mamma-
lian hearts, except the adult rat, increased fre-
quency of stimulation and administration of digitalis
clearly produce a significant increase in [Na]i and a
significant increase in contractile force. The re-
sponse fits and is predicted by the Na-Ca carrier
system. As I have discussed, the adult rat does not
demonstrate a positive inotropy upon an increase in
stimulation frequency or when given digitalis.
Neither does the heart show a gain in [Na]i (as indi-
cated by absence of a net K loss) with the above
interventions and the reason for this may be found
in the configuration of its action potential. As
shown (Fig. 1), the plateau is progressively lost with
age. A component of the plateau was shown to be
dependent upon a slow Na channel which seemed to
be present and operative in the young neonatal rat
(and in other adult mammalians) but lost in the
adult. The closure of this Na channel would be ex-
pected to greatly reduce the Na influx with each
excitation. It would follow that there would be a
reduced tendency for the adult rat to accumulate
[Na]i when the excitation frequency is increased or
the Na pump is inhibited by digitalis. Since eleva-
tion of [Na]i is the stimulus for the Na-Ca carrier
activation, this activation would not occur, Ca in-
flux would not increase and contractility would not
be augmented. The sequence as described for the
neonate to adult is consistent with progressive clo-
sure of the slow Na channel, accounts for the
anomalous behavior described and adds support to
the model proposed for the control of Ca movement
in the mammalian heart.

This study was supported by Grant HL 11351-11 from the
U. S. Public Health Service and a grant from the Castera Foun-
dation.
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